Radmis, a Novel Mitotic Spindle Protein that Functions in Cell Division of Neural Progenitors
نویسندگان
چکیده
Developmental dynamics of neural stem/progenitor cells (NSPCs) are crucial for embryonic and adult neurogenesis, but its regulatory factors are not fully understood. By differential subtractive screening with NSPCs versus their differentiated progenies, we identified the radmis (radial fiber and mitotic spindle)/ckap2l gene, a novel microtubule-associated protein (MAP) enriched in NSPCs. Radmis is a putative substrate for the E3-ubiquitin ligase, anaphase promoting complex/cyclosome (APC/C), and is degraded via the KEN box. Radmis was highly expressed in regions of active neurogenesis throughout life, and its distribution was dynamically regulated during NSPC division. In embryonic and perinatal brains, radmis localized to bipolar mitotic spindles and radial fibers (basal processes) of dividing NSPCs. As central nervous system development proceeded, radmis expression was lost in most brain regions, except for several neurogenic regions. In adult brain, radmis expression persisted in the mitotic spindles of both slowly-dividing stem cells and rapid amplifying progenitors. Overexpression of radmis in vitro induced hyper-stabilization of microtubules, severe defects in mitotic spindle formation, and mitotic arrest. In vivo gain-of-function using in utero electroporation revealed that radmis directed a reduction in NSPC proliferation and a concomitant increase in cell cycle exit, causing a reduction in the Tbr2-positive basal progenitor population and shrinkage of the embryonic subventricular zone. Besides, radmis loss-of-function by shRNAs induced the multipolar mitotic spindle structure, accompanied with the catastrophe of chromosome segregation including the long chromosome bridge between two separating daughter nuclei. These findings uncover the indispensable role of radmis in mitotic spindle formation and cell-cycle progression of NSPCs.
منابع مشابه
Strabismus regulates asymmetric cell divisions and cell fate determination in the mouse brain
The planar cell polarity (PCP) pathway organizes the cytoskeleton and polarizes cells within embryonic tissue. We investigate the relationship between PCP signaling and cell fate determination during asymmetric division of neural progenitors (NPs) in mouse embryos. The cortex of Lp/Lp (Loop-tail) mice deficient in the essential PCP mediator Vangl2, homologue of Drosophila melanogaster Strabismu...
متن کاملDoublecortin-like Kinase Controls Neurogenesis by Regulating Mitotic Spindles and M Phase Progression
The mechanisms controlling neurogenesis during brain development remain relatively unknown. Through a differential protein screen with developmental versus mature neural tissues, we identified a group of developmentally enriched microtubule-associated proteins (MAPs) including doublecortin-like kinase (DCLK), a protein that shares high homology with doublecortin (DCX). DCLK, but not DCX, is hig...
متن کاملG Protein βγ Subunits and AGS3 Control Spindle Orientation and Asymmetric Cell Fate of Cerebral Cortical Progenitors
Neurons in the developing mammalian brain are generated from progenitor cells in the proliferative ventricular zone, and control of progenitor division is essential to produce the correct number of neurons during neurogenesis. Here we establish that G subunits of heterotrimeric G proteins are required for proper mitotic-spindle orientation of neural progenitors in the developing neocortex. Inte...
متن کاملG protein betagamma subunits and AGS3 control spindle orientation and asymmetric cell fate of cerebral cortical progenitors.
Neurons in the developing mammalian brain are generated from progenitor cells in the proliferative ventricular zone, and control of progenitor division is essential to produce the correct number of neurons during neurogenesis. Here we establish that Gbetagamma subunits of heterotrimeric G proteins are required for proper mitotic-spindle orientation of neural progenitors in the developing neocor...
متن کاملMammalian Neurogenesis Requires Treacle-Plk1 for Precise Control of Spindle Orientation, Mitotic Progression, and Maintenance of Neural Progenitor Cells
The cerebral cortex is a specialized region of the brain that processes cognitive, motor, somatosensory, auditory, and visual functions. Its characteristic architecture and size is dependent upon the number of neurons generated during embryogenesis and has been postulated to be governed by symmetric versus asymmetric cell divisions, which mediate the balance between progenitor cell maintenance ...
متن کامل